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APPLICATIONS OF THE METHODS OF AVERAGING AND SUCCES§IVE APPROXIMATIONS
FOR STUDYING NONLINEAR OSCILLATIONS

L.D. AKULENKO

The question is examined of the existence of a solution of the Cauchy problem for
a system of ordinary differential eqguations, standard in the sense of Bogoliubov /1
—3/, describing a wide class of nonlinear processes of oscillations and rotations.
Constructive sufficient conditions for the existence and uniqueness of this solution
on asymptotically large time intervals are established by the method of successive
approximations /4,5/. Smoothness properties of a nonstationary process with respect
to the problem parameters (initial data) are investigated.

1. Statement of the problem and initial assumptions. We examine a standard
system of orxdinary differential equations on an asymptotically large time interval, with pre-
scribed initial conditions /1—3/

=Xt ) z(ty) =2t ty, Tl, T = B2 (1.1)

Here z, X are vectors of arbitrary dimension n > 1, t,, 2°, ©® are prescribed constants, e >0
is a small numerical parameter, &€& [0, ¢)). The following requirements are assumed of the
vector function X.

1) It is defined for all ¢ > ¢, and zED,, where D, E* is an open connected set, and
is 2n-periodic and piecewise-continuous in ¢,

2) Function X has a continuous derivative with respect to z & Dy, satisfying a Lipschitz
condition in the domain indicated.

3) For all g (0, g, 2° = D,o D, there exists a unique solution of Cauchy problem (1.1)
(this will be proved later)

I=I(t, t01 ch E)a tE[th T] (1.2)

belonging to the open domain D,.
4) The Cauchy problem for the averaged system (1.1)

dg/dv = X,y (§), £ (0) = 2° et =1 & [v,, O] (1.3)

where X, is the average of function X with respect to ¢t on the period 2m, T is slow time,
admits of the general solution

§=§(T—To, z°),§eD,, 2’ S Dye (1.4)

in the domain indicated. This solution is assumed known.

There are a large number of studies (see /1—3/ and the bibliography in /3/) establish-
ing the proximity property, in particular, ¢-proximity, between the unknown solution (1.2) of
the original Cauchy problem (l.1) and the solution (1.4) of the averaged system (1.3) under
the same initial conditions. The averaged system is autonomous and permits the exclusion of
parameter e; its solution is usually studied or can be constructed in a manner essentially
more simpler than the original complete system. The determination of the unknown general sol-
ution (1.2) to a higher degree of accuracy with respect to e on the asymptotically large time
interval t~e™ is difficult since the constructions of the averaging method, connected with
a change of variables, leads to the solving of a perturbed system of partial differential equa-
tions. The latter circumstance calls for a corresponding high degree of smoothness of func-
tion X with respect to z e D,. In the paper we examine the existence and uniqueness of the
general solution (1.2) of system (1.1) under the fulfillment of assumptions 1), 2) and 4). A
constructive algorithm is developed for the construction of this solution and its properties
are studied relative to changes in the problem parameters.

*Prikl.Matem.Mekhan.,45,No,5,771-777,1981
575



576 L.D. Akulenko

2. Simplification of the original Cauchy problem. In system (1.1) we make a
number of changes of the unknown variable 2. BAnalogously to /1— 3/ we introduce the averag-
ing method's error &

S =z — By, By (t, ) =E(1) +eult g (2.1)
t

w(te) = X (s,5(0) — Xo® (o) ds, o=6s

to

Here function u is uniformly bounded in 1, e; the dependency of u, Eion #, z° in (2.1) is not
indicated for brevity. For the unknown & we obtain the Cauchy problem

& =eX (t,5)0 +eD(t, 8,¢), 8(t) =0 (2.2)
O=[X@ )~ X DI+ X(¢ B+ — X &) —X' (1Y), 8] (2.3)

Here @ is a known function of t, §, . As follows from (2.3), the estimate
| D | <cop(e-+e|8]+ 82, cop = const (2.4)

1D (2, 8, &) — @ (&, B2 €) | <Tho |8, — 81 (18, |+ 18|+ ¢), Ao = const

is valid for @ in domain (4 + 8) = D,. We make an almost-identity transformation /6/ of vector
)

i
b= +el)z, Ule)= S' (X' (s, £(0) — X4’ (o)) ds (2.5

to

Here I is the unit matrix, U is a uniformly-bounded matrix-valued function analogous tou from
(2.1); the prime denotes a derivative with respect to vector z. Differentiating substitution
(2.5) relative to system (2.2), we obtain the Cauchy problem

2 =eXy (B)z+eF (2 2 6),2(t) =0 (2.6)
F=(T+eU)M{IX @ 8) — X (¢ E)—eUX, @)z + (2.7)
eX'(t, YUz +1X(t, By + (T +el)z) — X (t, Ey) — X' (¢, & — eu)3])
for the unknown z. Here F is a known function of ¢, z, &; according to (2.7)an estimate of type
(2.4) is valid for it, on the basis of assumption 2) of Sect.l, when [§, + (I 4+ eU)zl = D,, and
a Lipschitz condition is fulfilled

|F1<{er(et+e|z|+ 22, cp = const (2.8)
VF(tyz, 8) —~F(t, 20, ) | <hrlzy—2 (12 |+ 22| +8),
Ar = const

Using estimate (2.8) a perturbation by a quantity of the order of e? can be made. Indeed, func-
tion F can be presented in the form

F(t, z, &) = eFe (t, &) + eFe; (t, 2, &) 2 + Fau {t, 2, &) 2° (2.9)

where Fg, Fg, F» are uniformly bounded functions. Observe that when F =0,(2.6) is a system
in variations for (1.3). Allowing for the properties listed, in system (2.6) we make a change
of the unknown variable z

t
1=eZ(r+9), Z()=0k02, ¢(te)=/_24(0)F(s0,¢e)ds (2.10)
te

Here Z is the fundamental matrix for the variational system mentioned, ¢ is a known uniformly-
bounded function, and r is an unknown variable. On the strength of (2.8) and (2.9) the integral
in (2.10) is uniformly bounded. As a result, we obtain the Cauchy procblem

r=eR@ r e, rt) =20 (2.11)

for the unknown vector r. Function R is uniformly bounded and satisfies a Lipschitz condi-
tion
| R | < &cg, cg = const (2.12)

|R(t, r;,8) — R(t, ryy &) | << A |7y — 72 |, Ar = const
To construct the solution of Cauchy problem (2.11l) on an asymptotically large time interval

telty, T1, T = 8e™, we apply the recurrence procedure of the method of successive approxima-
tions (Picard's method) with respect to powers of & /4,5/.
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3. Construction of the exact solution. The unknown function r is constructed by
use of the recurrence scheme of Picard's method /7/

4
rnta=c{ Ren@eeds, r=0, j=01,... (3.1)
{0

Note that the variable r depends on the parameters f, and 2° as well; however, this dependence
is not indicated for brevity. The following assertion is valid.

Theorem. For a sufficiently small & >0 the successive approximations (3.1) converge
uniformly to a unique solution of Cauchy problem (2,1l) on the asymptotically large interval
t €= [ty, T)

Let us prove that any j,-th approximation is bounded by the guantity &M, where M >0
is some constant defined below. Indeed, we represent T;, as the sum

T =ry+m—r)+—r)+. ..+ — 1y (3.2)
We make use of (2.12) and of the estimation

Ini<eN, N=max|Z1[F({t,eZ¢,e)—F(0,¢e)]|0e®
Majorizing sum (3.2), for te&[t, B¢ t;ith the values &< g, < Az/0 we obtain

Ju ol o=
;rj,;gzir,-—q.,1<er5-r,~_lz< aw[i +2(sxxey}=.r_._f:%ﬁ.6_<mf (3.3)
e

Fuel =1

From (3.1) and (3.3) it follows as well that the successive approximations converge uniformly
when e <1/ Ag® to a continuous differentiable function re

limry=r (e}, limr/=r, (¢ (3.4}
jox e

Let us show that the limit function ry (t, &) from (3.4) is a solution of the Cauchy problem
(2.11). This assertion follows from the fact that the solution p (t, &) of system

p=eR@ ryft,e),8),p{ty) =0, tS [ty Tl
coincides with r, (t, €).
Finally, the solution r, (f, &) constructed is unique, which can be provedby contradiction.
Let p; and ps be any two solutions of Cauchy problem (2.11); then from the identities

t
pi (L, €) Ees R(s,pils,e)edds, i=1,2
i
and from (2.12) follows the inequality
max|p; — ps} <e7mﬁm:u:|pl-— pa}, eAr@ <1
£

which is possible only when p; == py for all (< [t, T]. The theorem has been proved. Thus,
substituting the function r, (t, &) constructed into (2.10), next, the known z (¢, £) into expres—
sion (2.5) for &, and, finally, the known function 8 (¢, &) into (2.1), we obtain the required
exact solution of Cauchy problem {1.1) in the form {1 is a uniformly bounded function)
z(t, ty, 2° &) = E(v — 1y, 2°) + en (¢, Ly &7, ©) (3.5)
n=ut+ I+ el)Z (e + @)

4., Notes. 1°. Using the replacements

x=E* 4 8, E¥(t, T, &) = E (1) + ev (¢, &, (1)) (4.1)

t
v=vt D= (X0~ X @
i

where v and §* are 2x-periodic functions of the explicitly occurring argument ¢, the original
equation system (l.1) is reduced to form (2.2) with another function ® = @* (4,%,8,¢). This
function is 2n-periodic in ¢ and in the domain being examined satisfies in ¢ and 8 the uni-~
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form estimate (2.4) since
Q= X {48+ 8 — X (6B — X (1,08 — etV X, (B (4.2)

Here the repeated differentiability of X with respect to z is assumed. With the aid of a
linear almost~identity transformation of the unknown § we obtain a system of type (2.6)

v o=eXy By -+ eG(t 1, y, 8, y ()= O (4.3)
Se=[F+eV(t, )y VI, B) =av/dk & -t (v)
G=(+ eV D+ eX' (1, &) Vy — eV' Xy — eVX 'yl

Here function € is 2a -periodic in the explicitly occurring argument t. Obviously, an estimate
of type (2.8} in ¢ and y is valid for ¢ and 6 can be represented in form {2.9). A scheme of
successive approximations in powers of ¢, analogous to that developed in section 3, is ap~
plicable to system (4.3). As the first approximation of the solution, vanishing when e = 0

for all 1=, Tl, we take the function

i
Vo= ep{t, &) =eZ (1) { 27 (0) G (s, 0, 0, &) ds, 0 = e (4.4)
i

where ¢ is a uniformly bounded function on the interval indicated. The recurrence scheme of
Picard's method enables us to construct by quadratures the required solution y(f, & to any pre-
assigned degree of accuracy in ¢

t
U 0) = 2 (1) {20 () G (5,0 y (s 0) 0 ds, =001, (4.5)
ta

The successive approximations (4.4), (4.5) converge uniformly for a sufficiently small &>0
te the unigue solution of Cauchy problem (4.3). Thus, again we have constructed the desired
exact solution of form {(4.1) of the Cauchy problem (1.1). The approach suggested above can
be moxe suitable for the analytical construction of functions » and V, as well as ® and ¢,
for example, as a Fourier series in t¢. However, as follows from (4.2), it requires a some-
what higher smoothness property of the function X relative to z& D,

2°, Using the approach in /7/ we can establish the continuous differentiability of solu-
tion (3.5) with respect to the initial data t,,x°. At first we establish the uniform continu-
ity of the limit function r(t, e, p), and, together with it, of the solution z of the original
system (1.1) with respect to some parameter u,peD, if function X depends continuocusly on
p . This assertion follows from the uniform convergence of sequence (3.4), obtainedby Picard's
method (3.1). On the strength of the fact of uniform continuity we next prove the possibility
of passing to the limit as A -0 in the matrix differential equation

d fEpa—2 Ty -
T —_—_AA ):sa(z,A) AA (4.6)

Here =z, is the solution of system (1.1) under the initial condition =z ({t) = 2°-+A. The matrix
A, depending continuously on parameter A, is obtained on the basis of the finite increment
theorem. As a result of the limit transitions in (4.6) we obtain the linear matrix equation

P =X (t,x{t,e) P, P{y) =1 (4.7)

for the matrix P of partial derivatives of solutions =z with respect to the initial data °(P =
dx/ 8z°y . Here I is the unit matrix. For each i-th column pi of matrix P we obtain a vari-
ational system /4/ with appropriate initial conditions

pi’ = €X' (t, 2) pi. pii (t) = 1, pix (t) == 0 (k == i) (4.8)

An equation analogous to (4.8) is obtained for the vector of the derivative of the solution
with respect to t; the initial value equals /7/ — X {5, 2°).
We seek the scolution of Cauchy problem (4.7} as

1
Pl +eUnW, Uslts) = S [X' (s, 5 (s, &) — X4 (E(O))] ds {4.9)
&

Here W is an unknown matrix and U,is a matrix uniformly bounded for ¢ e=lf. Th Differentiating
substitution {4.9) relative to system (4.3), we obtain



Methods of averaging and successive approximations 579

(I 4 eU W = eXJW + 2X' U W, Wty =1 (4.10)
We represent the requiredmatrix W as a series with unknown matrix coefficients ¢;(=1, 2, ..)
W =Z (I + eC; + €€, + ...), C;(t) =0 (4.11)

Substituting this expression into (4.10), we obtain recurrence relations for the uniformly
bounded coefficients C;(t,¢)

{
Cipy= S ZV (e (X'Ug— Xo) 2C; — UsZC; ] ds (4.12)
to

t
Oy = e[ 27X (5,5 0) Un (s, ) — Xy B (OD] Zds, =12 ...
to

For a sufficiently small ¢>0 the series (4.11) converges to the unique solution of system
(4.10) for all telt, rl. By the same token we have defined, in accord with (4.9), a matrix p
characterizing the sensitivity of solution z{t, 2°, &) of (3.5) with respect to changes in the
initial data.

In analogous fashion we can determine ‘a sensitivity matrix® K for the solution =z (t,t), 2°
e, p) 1in the general case of a system of form

"= eX (t, z, u)y & (o) = 2°, £y = & (p)y 2° = 2° (W), u EDu

with respect to the parameter vector p of arbitrary dimension m, which can include the initial
data. To do this we can solve, by the means proposed above, the Cauchy problem for the matrix
equation with initial conditions obtained by differentiation of functions z°(u), ¢ () with re-

spect to
P " ‘=X (¢, z,n) K+ edX (¢, 2, n) / p

0

Dz 8z R aty
=TDp Kl =g —eX{ba® W) 5~

In particular, if parameters 2’ and ¢, are fixed and are independent of pu, we obtain a
linear inhomogeneous matrix equation with zero initial conditions.

30, Let us now consider the Cauchy problem for a standard system with rotating phase on
an asymptotically large interval telt, Il (see /1,3,6,8,9/)

o’ =ed (a,§), ¥ = @ (a) + ¥ (a, §), a (tg) = a° ¥ (f) = y° (4.13)

Here a is the n-vector of slow variables, ¢ is the scalar phase, 4 and ¥ are 2a-periodic
functions of the fast variable 4, and the frequency o (e)> 0w, >0. The right-hand sides of
Egs.(4.13) are taken to be sufficiently smooth with respect to e Dg, 9 = §°, ). We observe
that system (4.13) describes a wide class of perturbed essentially-nonlinear rotary-oscillat-
ory processes. By the usual device /8/, the division of a by ', we obtain a standard system
of form (1.1)

da Ala,

ap = ¢ w(a)-*-(s‘}:pga,lp) »oa(¥)=a (4.14)

We accept the fulfillment of the assumptions in section 1 for system (4.14). Then on an asy-
mptotically large interval of variation of the fast variable ¢, Y=, ¥;], %, ~¢l, we obtain, by
using the approach in sections 2 and 3, a solution, smooth with respect to ¥° and a° €D, S Dg
of a form analogous to (3.5)

o =a (P, P° a% &) = a (0 — 0°, a°) 4 ey (P, ¥°, a°, &)
0=ceyp, 0 =0° 67], 6, ~1

Here o is a solution of the first-approximation system averaged with respect to v
do/dB = A, (@) / © (@), «(8°) = a°
and vy is a function uniformly bounded for all ¢ e [¥° ¥7] .

Substituting the expression for & into the equation for ¢ in (4.13), we obtain an egua-
tion with separable variables, uniquely connecting ¢ and ¢

d
t.-:o=§.;(—a)—_l‘_"ﬁ(—m—), 6B = 0 (a4 ey) — 0 (@) + ¥ (4.15)
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For brevity we do not indicate the dependence of the bounded function B on the other arguments.
From relation (4.15) the required function ¥ (f) and, together with it, a(¢) can be found by suc-
cessive approximations based on the first-approximation solution. The quantity 7T ~g?t is
determined from (4.15) for the value ¢ =1vq,

Thus, the successive approximations method (Picard's method) suggested above proves to
be a rather effective means of analyzing nonstationary oscillatory processes on a large time
interval. The results obtained by its use have an independent significance and are particular-
ly important when solving the boundary-value problems of Pontriagin's maximum principle; a
number of optimal control problems for nonlinear oscillatory systems lead to the investigation
of such boundary-value problems when asymptotic methods /9/ are used.
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