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APPLICATIONS OF THE METHODS OF AVERAGING AND SUCCESSIVE APPROXIMATIONS 
FOR STUDYING NONLINEAR OSCILLATIONS* 

L.D. AKULRNKO 

The question is examined of the existence of a solution of the Cauchy problem for 
a system of ordinary differential equations, standard in the sense of Bogoliubov /l 
-33/, describing a wide class of nonlinear processes of oscillations and rotations. 
Constructive sufficient conditions for the existence and uniquenessofthissolution 
on asymptotically large time intervals are established by the method of successive 
approximations /4,5/. Smoothness properties of a nonstationary processwithrespect 
to the problem parameters (initial data) are investigated. 

1. Statement of the problem and initial assumptions. We examine a standard 
system of ordinary differential equations on an asymptotically large time interval, with pre- 
scribed initial conditions /l-33/ 

5' = EX (t, Z), z (to) = z', t E [to, Tj, T = @E-l (1.1) 

Here z, X are vectors of arbitrary dimension n> 1, t,, x0, 8 are prescribed constants, s>O 
is a small numerical parameter, EE [O, e,]. The following requirements are assumed of the 

vector function X. 
1) It is defined for all t> t,, and XE D,, where D, C En is an open connected set, and 

is 2n-periodic and piecewise-continuous in t, 
2) Function Xhas a continuous derivative with respect to XED,, satisfying a Lipschits 

condition in the domain indicated. 
3) For all a~ (O,EJ, X'E D,o CD, there exists a unique solution of Cauchy problem (1.1) 

(this will be proved later) 

2 = x (t, to, 9, E), t E Ito, Tl 

belonging to the open domain D,. 

(1.2) 

4) The Cauchy problem for the averaged system (1.1) 

dt / dz = X0 (z), 5 (0) = x0, Et = T E IT,, 81 (1.3) 

where X0 is the average of function Xwith respect to t on the period 2n, t is slow time, 
admits of the general solution 

5 = g(r - rO, x0), 5 ED,, x” e D,. (1.4) 

in the domain indicated. This solution is assumed known. 
There are a large number of studies (see /l-33/ and the bibliography in /3/) establish- 

ing the proximity property, in particular, e-proximity, between the unknown solution (1.2) of 
the original Cauchy problem (1.1) and the solution (1.4) of the averaged system (1.3) under 
the same initial conditions. The averaged system is autonomous and permits the exclusionof 
parameter e; its solution is usually studied or can be constructed in a manner essentially 
more simpler than the original complete system. The determination of the unknown general sol- 
ution (1.2) to a higher degree of accuracy with respect to e on the asymptoticallylargetime 
interval t-~-l is difficult since the constructions of the averaging method, connected with 
a change of variables, leads to the solving ofaperturbed system of partial differentialequa- 
tions. The latter circumstance calls for a corresponding high degree of smoothness of func- 
tion X with respect to .ZE D,. In the paper we examine the existence and uniqueness of the 
general solution (1.2) of system (1.1) under the fulfillment of assumptions l), 2) and 4). A 
constructive algorithm is developed for the construction of this solution and its properties 
are studied relative to changesinthe problem parameters. 
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2. Simplification of the original Cauchy problem. In system (1.1) we make a 
number of changes of the unknown variable Z. Analogously to /l- 3/ we introduce the averag- 
ing method's error 6 

6 = m - &, E* (t, a) = 5 (r) + EU (t, E) (2.1) 

u (t, E) = .i Ix (6 i ((J)) - xo (i(a))1 ds, 0=&S 

to 

Here function his uniformly bounded in 1, E; the dependency of U, 5 on t0.2' in (2.1) is not 
indicated for brevity. For the unknown 6 we obtain the Cauchy problem 

6‘ = EX' (t, E) 6 + E(D (t, 6, F), 6 (to) = 0 (2.2) 

Q = [X (6 5*) - x (t7 EN + 1-x (t, 5* + S) - x 0, E*) -X' (t, El, 61 (2.3) 

Here @is a known function of t, 6, E. As follows from (2.3), the estimate 

1 @ 1 < Ca (E $ E 1 6 1 + @), Cq, = CODSt (2.4) 

1 Q, (t, 6,, E) - @ (b b, 6) 1 -< hi 1 6, - 62 1 (I 61 I + I 8, 1 + E), Aa, = const 

is valid for @ in domain (& + 6)E D,. We make an almost-identity transformation/6/ofvector 

s 

6=(IfeU)z, u (t, E)= j Lx'@, E(c))- xo'(E(c))l ds (2.5) 
0 

Here I is the unit matrix, U is a uniformly-bounded matrix-valued function analogous ton from 
(2.1); the prime denotes a derivative with respect to vector x. Differentiating substitution 
(2.5) relative to system (2.2) , we obtain the Cauchy problem 

z' = eX,' (E) z -+ EF (t, 2, E), 2 (to) = 0 (2.6) 

F = (1 -t EU)-r {Ix (t, &) - x (t, E)] - Eux,' (5) Z + (2.7) 
ax (t, E) UZ + (x (t, E, + (1 + Eu) 2) - x (t, &) - x'(t, E* - EU) 21) 

for the unknown z. Here F is a known function of t, z, a; according to (2.7)anestimateoftype 
(2.4) is valid for it, on the basis of assumption 2) of Sect.1, when [E* + (I$ eU)z]E D,, and 
a Lipschitz condition is fulfilled 

~F~~<cp(e+~~zI+z~), cF=const 

I F (L zlr E) - p 03 ZZ? 4 I Q b I Zl - 3 I (I 21 I + 
hR = const 

(2.8) 
I ?4 I + 4, 

Usingestimate(2.8)aperturbation by a quantity of the order of 
tion F can be presented in the form 

ES can be made. Indeed, func- 

F (t, z, e) = &Fe (t, E) + eF., (t, z, E) z + Fe (t. z, E) 2% (2.9) 

where F,, F,,,F,. are uniformly bounded functions. Observe that when FL 0,CZ.h) is asystem 
in variations for (1.3). Allowing for the properties listed, in system (2.6) we makeachange 
of the unknown variable z 

z= eZ(r + cp), Z(T) = 8&k%?, cp (t, E) s j %-’ (a) F (s, 0, e) ds (2.10) 
t. 

Here 2 is the fundamental matrix for the variational system mentioned, cp is a known uniformly- 
bounded function, and r is an unknown variable. On the strength of (2.8) and (2.9) theintegral 
in (2.10) is uniformly bounded. As a result, we obtain the Cauchy problem 

r' = eR (t, r, e), r (to) = 0 (2.11) 

for the unknown vector r. Function Ris uniformly bounded and satisfies a Lipschitz condi- 
tion 

1 R ) < 6?CR. CR = COnSt (2.12) 

I R 0, rlr e) - R (t, r2, E) ( < eh 1 rl - r2 I, AR = const 

To construct the solution of Cauchy problem (2.11) on an asymptotically large time interval 

t E ho, 27, T = ee-’ , we apply the recurrence procedure of the method of successive approxima- 
tions (Picard's method) with respect to powers of E /4,5/. 
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3. Construction of the exact solution. The unknown function r is constructed by 
use of the recurrence scheme of Picard's method /7/ 

rjt,(t,e)=eSR(s,rjfs,E)E)*, r,sO, j=O,f,... 
10 

(3.1) 

Note that the variable r depends on the parameters t, and x0 as well; however,thisdependence 
is not indicated for brevity. The following assertion is valid. 

Theorem. For a sufficiently small E>O the successive approximations (3.1) converge 
uniformly to a unique solution of Cauchy problem (2.11) on the asymptotically large interval 

t E It,, Tl. 
Let us prove that any j+-th approximation is bounded by the quantity EM, where X> 0 

is some constant defined below. Indeed, we represent ~3, as the sum 

rj'js = r. -I- (rl - ro) f (r2 - rl) -!- . . . f @I, - rj,_J (3.2) 

We make use of (2.12) and of the estimation 

]rii <EN, N=max / 2-l [F(t,eZ~,e)--F(t,O,e)j 1 Be-* 
* 

Majorizing sum (3.2), for tE [to, 8e-'j with the values c< so <An/@ we obtain 

(3.3) 

From (3.1) and (3.3) it follows as well that the successive approximations converge uniformly 
when e (Z/ ha8 to a continuous differentiable function r* 

lim rj = r* (1, E), 
j-a 

iim rj’ = r*’ (t, E) (3.4) 
j-m 

Let us show that the limit function r*(t,e) from (3.4) is a solution of the Cauchy problem 
(2.11). This assertion follows from the fact that the solution p(t,e) of system 

p' = eR ft. r* (6 e)* s), P &,) = 0, t E It,, 2'1 
coincides with r* 0. e), 

Finally, the solution r,(t, e) constructed is unique, which can be provedby contradiction. 
Let p,and pe be any two solutions of Cauchy problem (2.11); then from the identities 

and from (2.12) follows the inequality 

marIpl_fil&8hR@m;x(pl--&j, &&<i 
t 

which is possible only when p1 az pa for all tE [to, T1. The theorem has been proved. !rhus, 

substituting the function r,(t, e) constructed into (2.10), next, the known z(t, 8) into expres- 
sion (2.5) for 6, and, finally, the known function 6(t, E) into (2.1), we obtain therequired 
exact solution of Cauchy problem (1.1) in the form (Y) is a uniformly bounded function) 

r (& to, zo9 e) = % (T - To, 2") f t?q (t, to? z", 8) (3.5) 

‘1=u+(~fE~)Z(r*+(p) 

4. Notes. lo. Using the replacements 

x =I E' + 6, f' (1, T, e) = f (1) -t ev tt, E, (z)) (4.1) 

v=“(t,4)=S [X(s,e)-x,(E)]as 
f‘ 

where D and %* are On-periodic functions of the explicitly occurring argument t, theoriginal 
equation system (1.1) is reduced to form (2.2) with another function 
function is 

Q, = cP* @,T, 6,el. This 
Zn-periodic in t and in the domain being examined satisfies in 8 and 8 the uni- 
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form estimate (2.4) since 

CD E x (t, 5* '- 6) - X (t, E) - X' (1, E) 6 - &*V'X* (Q (4.2) 

Here the repeated differentiability of X with respect to 5 is assumed. With the aid of a 
linear almost-identity transformation of the unknown 6 we obtain a system of type (2.6) 

Here function G is %-periodic in the explicitly occurring argument t. Obviously,anestimate 
of type (2.8) in E and Y is valid for G and G can be represented in form (2.9). A scheme of 
successive approximations in powers of E, analogous to that developed in section 3, is ap- 
plicable to system (4.3). As the first approximation of the solution, vanishing when E---O 
for all t =Ito, Tl, we take the function 

y, = E’P (t, E) z ~2 (z) [ Z-’ (a) G (s, u, 0, E) ds, (i = ES 

T, 

where 'p is a uniformly bounded function on the interval indicated. The recurrence 
Picard's method enables us to construct by quadratures the requiredsolution y(t, E) 
assigned degree of accuracy in E 

yj+, (t, E) = EZ (z) Z-' (5) G (.-, 6, yj (s, r). E)&, j=O,t,.. 
fG 

(4.4) 

scheme of 
to any pre- 

(4.5) 

The successive approximations (4.4), (4.5) converge uniformly for a sufficiently small e>O 
to the unique solution of Cauchy problem (4.3). mus, again we have constructed the desired 
exact solution of form (4.1) of the Cauchy problem (1.1). The approach suggested above can 
be more suitable for the analytical construction of functions s and v, as well as @ and G, 
for example, as a Fourier series in t. However, as follows from (4.21, it requires a some- 
what higher smoothness property of the function X relative to XED,. 

20 . Using the approach in /7/ we can establish the continuous differentiability of solu- 
tion (3.5) with respect to the initial data t,,,?. At first we establish the uniform continu- 
ity of the limit function r(t,e,p), and, together with it, of the solution 5 of the original 
system (1.1) with respect to some parameter K K E-DLL' if function X depends continuously on 
~1 . This assertion follows from the uniform convergenceofsequence (3.4),obtainedbyPicard's 
method (3.1). On the strength of the fact of uniform continuity we next prove the possibility 
of passing to the limit as A-+0 in the matrix differential equation 

(4.6) 

Here z& is the solution of system (1.1) under the initial condition xA(f,) = zO+A. The matrix 
A, depending continuously on parameter A, is obtained on the basis of the finite increment 

theorem. As a result of the limit transitions in (4.6) we obtain the linear matrix equation 

for the matrix 

P’ = EX’ (t, 5 (t, E)) P, P ito) = r (4.7) 

P of partial derivatives of solutions z with respect to the initial data z?(P== 
ax I as) . Here I is the unit matrix. For each i -th column Pi of matrix P we obtain a vari- 
ational system /4/ with appropriate initial conditions 

pi' = EX' (t, Z) pi, pii (to) = 1, Pik (to) = 0 (k 5: i) (4.8) 

An equation analogous to (4.8) is obtained for the vector of the derivative of the solution 
with-respect to -t,; the initial value equals /7/-EX (t,,x"). 

We seek the solution of Cauchy problem (4.7) as 

Here W is an unknown matrix and U,i.s a matrix uniformly bounded Eor TV& Tj,Differentiating 
substitution (4.9) relative to system (4.3)‘ we obtain 

P F (I + eU*) VI', U* (t, E) = 
s 
’ [X’ (s, z (s. e)) - X0’ (f(a))] dr (4.9) 
1. 
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(I + EU,)W’ = EXOW + e”X’U*W, w (to) = I (4.10) 

We representtherequiredmatrix Was a series with unknown matrix coefficients Cj(j = I* 2, . ..) 

n’ = z (I + ec, + ET, + . ..). cj (to) = 0 

Substituting this expression into (4.10), we obtain recurrence 
bounded coefficients Cj (tl 8) 

cj+l = 
.c 
Z_l[E (X'U*- Xi)ZCj -cr*ZCj']ds 

C, = E 
s: 
Z-l[X'(s, F_, (a)) &(s,F)- X4 (E(a))] Zds, i = 

LO 

(4.11) 

relations for the uniformly 

(4.12) 

1,2,... 

For a sufficiently small E>O the series (4.11) converges to the unique solution of system 
(4.10) for all tilt,, T]. By the same token we have defined, in accord with (4.9), a matrix P 

characterizing the sensitivity of solution s(t,t,,, P, E) of (3.5) with respect to changes in the 
initial data. 

In analogous fashion we can determine% sensitivity matrix" Kfor the solution z(t,t,,~o, 
e,~) in the general case of a system of form 

2' = EX (t, z. p), z (GJ = zO, t0 = tll (p), 5O = z0 (p), p ED, 

with respect to the parameter vector ~1 of arbitrary dimension m, whichcanincludetheinitial 
data. To do this we can solve, by the means proposed above, the Cauchy problemforthematrix 
equation with initial conditions obtained by differentiation of functions z"(~),ta(~) with re- 
spect to p 

K' = eX' (t, I, p) K + &BX (t, 5, p)/ ap 
DZ a20 

K=w, 
atO 

K P”) = F - FX (to9 zO, P) yq 

In particular, if parameters x0 and t, are fixed and are independent of p, we obtain a 
linear inhomogeneous matrix equation with zero initial conditions. 

30. Let us now consider the Cauchy problem for a standard system with rotating phase on 
an asymptotically large interval t =ltO. T] (see /1,3,6,8,9/) 

a' = eA (a, $), 0' = o (a) + EY (a, Q), a (to) = ~'7 $ (to) = 9" (4.13) 

Here a is the n-vector of slow variables, 11 is the scalar phase, A and '4 are Zn-periodic 
functions of the fast variable +, and the frequency o(a)>o,>O. The right-hand sides of 
Eqs.(4.13) are taken to be sufficiently smooth with respect to a ED~,I#~E[$‘,w). We observe 
that system (4.13) describes a wide class of perturbed essentially-nonlinear rotary-oscillat- 
ory processes. By the usual device /8/, the division of a'by $',we obtain a standard system 
of form (1.1) 

da 
--E A (~3 $) 
dt# - w (a) + eY (a, I#) ’ a @if) = a0 (4.14) 

We accept the fulfillment of the assumptions in section 1 for system (4.14). Then on an asy- 
mptotically large interval of variation of the fast variable $,QE[$+,$+],$~-&, we obtain, by 
using the approach in sections 2 and 3, a solution, smooth with respect to +" and a0= Dan&D, 
of a form analogous to (3.5) 

(1 = a (Q, rp", a", E) = a (e - e", a") + EY ($, $0, ao, E) 
e = e+. e E [en, e,], eT -I 

Here a is a solution of the first-approximation system averaged with respect to 1~1 

da/de = A, (a) / o (a), a (0’) = a” 

and Y is a function uniformly bounded for all (I, es ]rp", $+I . 
Substituting the expression for 0 into the equation for cp in (4.13), we obtain an equa- 

tion with separable variables, uniquely connecting Q and t 

.a 
t-to= s dv 

o(W+eB(rp)’ sB=o(a+sy)-o((a)+e~ 
rp* 

(4.15) 
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For brevity we do not indicate the dependence of the bounded function B on theotherarguments. 
From relation (4.15) the required function q(t) and, together with it, a(t) can be found by suc- 
cessive approximations based on the first-approximation solution. The quantity T-e-1 is 
determined from (4.15) for the value (11=%. 

Thus, the successive approximations method (Picard's method) suggested above proves to 
be a rather effective means of analyzing nonstationary oscillatory processes on a large time 
interval. The results obtained by its use have an independent significance andareparticular- 
ly important when solving the boundary-value problems of Pontriagin's maximum principle; a 
number of optimal control problems for nonlinear oscillatory systems leadtotheinvestigation 
of such boundary-value problems when asymptotic methods /9/ are used. 
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